Internally architectured materials with directionally asymmetric friction
نویسندگان
چکیده
Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations.
منابع مشابه
In situ realization of asymmetric ratchet structures within microchannels by directionally guided light transmission and their directional flow behavior.
An asymmetric ratchet structure within microchannels is demonstrated by directionally guided light transmission for controlled liquid flow. A direct and facile method is presented to realize programmed asymmetric structures, which control the fluid direction and speed.
متن کاملAsymmetric Friction of Nonmotor MAPs Can Lead to Their Directional Motion in Active Microtubule Networks
Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins' function is poorly understood. Here, we combine optical trapping with TIRF-based microscopy to measure the force dependence of microtubule intera...
متن کاملDevelopment of constitutive equation of filled silicone architectured membrane
Architectured membranes can be developed in order to mimic living tissues. The main point is to generate anisotropic membranes that can endure large deformations. In this way, crenellated membranes are elaborated with a filled silicone rubber. The aim of this work is to develop a constitutive equation which describes the mechanical behavior of such architectured materials. Membranes with differ...
متن کاملEffective directional self-gathering of drops on spine of cactus with splayed capillary arrays.
We report that the fast droplet transport without additional energy expenditure can be achieved on the spine of cactus (Gymnocalycium baldianum) with the assistance of its special surface structure: the cactus spine exhibits a cone-like structure covered with tilted scales. A single scale and the spine surface under it cooperatively construct a splayed capillary tube. The arrays of capillary tu...
متن کاملMultiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion
The concept of multiscale architectured materials is established using composition and grain size gradients. Composition-gradient nanostructured materials are produced from coarse grained interstitial free steels via carburization and high-pressure torsion. Quantitative analyses of the dislocation density using X-ray diffraction and microstructural studies clearly demonstrate the gradients of t...
متن کامل